
www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 14 – Lists (Continued)

www.umbc.edu

Last Class We Covered

• The tuple data structure

– Creation, conversion, slicing, traversal

• Casting variables

• The membership “in” operator

2

Infinite while loops

www.umbc.edu3

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To review what we know about lists already

• To learn more about lists in Python

• To understand two-dimensional lists

– (And more dimensions!)

• To practice passing lists to functions

• To learn about mutability and its uses

4

www.umbc.edu5

List Review

www.umbc.edu

Previously Seen Operations

• Many of the operations we saw on strings are
possible with lists

• Which of the following works with lists?
– Concatenation (+)

– Indexing

– Slicing

– .lower() and .upper()

– len()

6

www.umbc.edu

Concatenation

• Concatenation does work on lists!

– But it has the same limit as string concatenation

– You can only concatenate lists with lists

• So this works:
bookList + supplyList

• But this doesn’t:
animalList + "horse"

7

animalList + ["horse"]

www.umbc.edu

Indexing

• Indexing does work on lists!

• In the exact same way it does for strings

• Some examples:
studentNames[16]

courseTitles[len(courseTitles) - 4]

songList[FAV_INDEX]

8

www.umbc.edu

Slicing

• Slicing does work on lists!

• In the exact same way it does for strings

• Slicing goes “up to but not including”
the end of the slice
>>> stuff = [17, "A", -22, True, "Hello"]

>>> print(stuff[2:4])

[-22, True]

9

www.umbc.edu

.lower() and .upper()

• These operations do not work on lists!

– They don’t make sense for a list

• In the same way, .append() and
.remove() don’t work on strings

• If you try, you get an error about attributes:
AttributeError: 'str' object has no

attribute 'remove'

10

www.umbc.edu

len()

• Calling len() does work on lists!

• In the exact same way it does for strings

• Returns the length of the list

– In other words, the number of elements

11

www.umbc.edu12

Two-Dimensional Lists

www.umbc.edu

Two-Dimensional Lists

• Lists can hold any type (int, string, float, etc.)

– This means they can also hold another list

• We’ve looked at lists as being one-dimensional

–But lists can also be two-
(or three- or four- or five-, etc.)
dimensional!

13 Image from wikimedia.org

www.umbc.edu

Two-Dimensional Lists: A Grid

• It may help to think of 2D lists as a grid

twoD = [[1,2,3], [4,5,6], [7,8,9]]

14

1 2 3

4 5 6

7 8 9

www.umbc.edu

Two-Dimensional Lists: A Grid
• You access an element by the index of

its row, and then the column

–Remember – indexing starts at 0!

15

0 1 2

0 1 2 3

1 4 5 6

2 7 8 9

www.umbc.edu

Two-Dimensional Lists: A Grid
• You access an element by the index of

its row, and then the column

–Remember – indexing starts at 0!

16

0 1 2

0 1 2 3

1 4 5 6

2 7 8 9

index: [0][2]

index: [1][0]

index: [2][1] index: [2][2]

www.umbc.edu

Lists of Strings

• Remember, a string is like a list of characters

• So what is a list of strings?

– Like a two-dimensional list!

• We have the index of the string (the row)

• And the index of the character (the column)

17

www.umbc.edu

Lists of Strings

• Lists in Python don’t have to be rectangular

– They can be jagged (rows of different lengths)

• Anything we could do
with a one-dimensional
list, we can do with a
two-dimensional list

– Slicing, index, appending

18

0 1 2 3 4

0 A l i c e

1 B o b

2 E v a n

names

www.umbc.edu

Three-Dimensional Lists

• How would you declare a 3D list?

• Square brackets for the list, row, and cells

threeD = [[[201,"B"], [202,"B"], [203,"C"]],

[[313,"C"], [331,"C"], [341,"C"]]]

19

one cell

one row

overall list brackets

www.umbc.edu

Three-Dimensional Lists

• Don’t think of the third dimension as “depth”

• Instead, it’s simply the “contents” of the cells

threeD = [[[201,"B"], [202,"B"], [203,"C"]],

[[313,"C"], [331,"C"], [341,"C"]]]

20

The first two
dimensions give us a
2 row, 3 column list

www.umbc.edu21

Mutability

www.umbc.edu

Mutable and Immutable

• In python, certain structures cannot be altered
once they are created and are called immutable

– These include integers, tuples, and strings

• Other structures can be altered after
they are created and are called mutable

– These include lists

22

www.umbc.edu

Lists and Mutability

• When you assign one list to another, it is by
default a “shallow” copy of the list

• Any “in place” changes that are made to the
shallow copy show up in the “original” list

• Sort of like a pseudonym: one variable can be
accessed with two separate names

• The other option is a “deep” copy of the list,
but you must specify this is what you want

23

www.umbc.edu

Shallow and Deep Copies

• A shallow copy is when the new variable
actually points to the old variable, rather than
making an actual copy

• A deep copy is the opposite, creating an
entirely new list for the new variable

24

www.umbc.edu

Shallow Copy Example

• A shallow copy and its effects on the original:

list1 = ["red", "blue"]

list2 = list1

list2.append("green")

list2[1] = "yellow"

print("original: ", list1)

print("shallow copy: ", list2)

25

original: ['red', 'yellow', 'green']

shallow copy: ['red', 'yellow', 'green']

www.umbc.edu

Shallow Copy

• When we make a shallow copy, we are
essentially just giving the same list two
different variable names

– They both reference the same place in memory

26

list1

list2

["red", "blue"]

www.umbc.edu

Deep Copy

• There are two easy ways to do a deep copy:

– Use slicing, and “slice” out the entire list

– Cast the original as a list when assigning

• With these, Python returns a brand new copy
that you can then assign to the new variable

–Now you have two separate, individual lists!

27

www.umbc.edu

Deep Copy Example
list1 = ["red", "blue"]

list2 = list1[:] # use slicing to copy

list2[1] = "yellow"

list3 = list(list1) # use casting to copy

list3.append("purple")

print("original: ", list1)

print("deep copy1: ", list2)

print("deep copy2: ", list3)

28

original: ['red', 'blue']

deep copy1: ['red', 'yellow']

deep copy2: ['red', 'blue', 'purple']

www.umbc.edu

Deep Copy

• Creates a copy of the entire list’s contents, not
just of the list itself

• Each variable now has its own individual list

29

list1

list2

["red", "blue"]

["red", "yellow"]

["red", "blue", "purple"]list3

www.umbc.edu30

Mutability and Functions

www.umbc.edu

Lists, Functions, and Mutability

• When actual parameters are passed to a
function, they are assigned to the formal
parameters using the assignment operator

• So does the function have a deep copy?

– No, it has a shallow copy!

– It’s a reference to the original list

31

www.umbc.edu

Python Is “Lazy”

• Lists can be a lot bigger than Booleans,
integers, or even strings!

• When we pass a list as a parameter, Python
doesn’t want to copy the entire thing

– Copying can take a lot of memory and time

• Instead, when we pass a list to a function,
Python actually sends a reference to the list

32

www.umbc.edu

References

• A reference essentially states where the
list is stored in the computer’s memory

– Mutable objects are always passed by reference

• Since lists are mutable, that means that the
function the list was passed to now has direct
access to the “original” list

– And can change its contents!!!

33

www.umbc.edu

• main() has a list called myList

• Instead of copying over all of
the values stored in myList,
Python will instead pass a
reference to newFxn()

34 Images from pixabay.com and flickr.com

myList

www.umbc.edu

• main() has a list called myList

• Instead of copying over all of
the values stored in myList,
Python will instead pass a
reference to newFxn()

• But now newFxn()
has direct access to the
actual contents of myList

35 Images from pixabay.com and flickr.com

myList

www.umbc.edu

Mutability in Functions

• When a parameter is passed that is mutable,
it is now possible for the second function to
directly access and change the contents

• This only works if we change the variable
“in place” – assigning a whole new value to
the variable will override the mutability

– Any “in place” changes that are made to the
shallow copy show up in the “original” list

36

www.umbc.edu

Scope and Mutability in Functions

• A good general rule for if a change is “in place”:

• When you use something like .append()

on it, that’s an “in place” change

• When you use the assignment operator, the
that’s not an “in place” change

– Unless you are editing one element, like in a list

37

www.umbc.edu

Scope and Mutability in Functions

38 From http://stackoverflow.com/a/25670170

Function is called, and formal parameter F
is assigned the actual parameter A

A is immutable
(integer, string)

A is mutable
(lists)

A doesn’t change
If F changes

F is assigned to
something else
F = [0, 1]

F = "hello"

F is modified
in place

F.append(2)

F[0] = 17

A doesn’t change
If F changes

A changes
If F changes

www.umbc.edu

Using Mutability

• Shallow copies are not always a bad thing!

• Being able to

–Pass a list to a function

–Have that function make changes

–And have those changes “stick”

• Can be very useful!

39

www.umbc.edu40

www.umbc.edu

Cloning and Adopting Dogs

• Write a program that contains the following:

• A main() with a list of dogs at an adoption event

– Use deep copy to “clone” the dogs by creating a
second, unique list (and a third one as well)

• An adopt() function that takes in a list of dogs,
and replaces all of their names with “adopted!”

– These changes should “stick” in main() as well,
without the function returning anything

41

www.umbc.edu

Announcements

• HW 5 out on Blackboard Wednesday night

– Must re-take the Academic Integrity Quiz to see it

– Due next Friday, April 7th @ 8:59:59 PM

• Discussions start again next week

– Remainder of labs will be in-person

– Pre Lab quiz will come out Friday morning

• Exam pick-up at the front

42

