CMSC201
Computer Science | for Majors

Lecture 14 — Lists (Continued)

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted www.umbc.edu



Last Class We Covered

* The tuple data structure

— Creation, conversion, slicing, traversal
e Casting variables
* The membership “in” operator

)I Infinite while loops <
E_D
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Any Questions from Last Time?
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Today’s Objectives

To review what we know about lists already

To learn more about lists in Python
To understand two-dimensional lists

— (And more dimensions!)
To practice passing lists to functions
To learn about mutability and its uses
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List Review
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Previously Seen Operations

 Many of the operations we saw on strings are
possible with lists

* Which of the following works with lists?
— Concatenation (+)
— Indexing
— Slicing
— .lower () and .upper ()
— len ()
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Concatenation

e Concatenation does work on lists!

— But it has the same limit as string concatenation
— You can only concatenate lists with lists

 So this works:
bookList + supplyList

e But this doesn’t:

animall.ist + "horse"
animallist + ["horse"]
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Indexing

* Indexing does work on lists!
* |n the exact same way it does for strings

* Some examples:
studentNames[16]
courseTitles[len (courseTitles) - 4]
songList [FAV INDEX]
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Slicing

* Slicing does work on lists!
* |n the exact same way it does for strings

* Slicing goes “up to but not including”

the end of the slice

>>> stuff = [17, "A", -22, True, "Hello"]
>>> print( stuff[2:4] )

[-22, True]
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.lower () and .upper ()

* These operations do not work on lists!

— They don’t make sense for a list

* Inthe same way, .append() and
.remove () don’t work on strings

* |f you try, you get an error about attributes:

AttributeError: 'str' object has no
attribute 'remove'
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len ()

 Calling len () does work on lists!

* |n the exact same way it does for strings

* Returns the length of the list
—In other words, the number of elements

11 www.umbc.edu



Two-Dimensional Lists
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Two-Dimensional Lists

 Lists can hold any type (int, string, float, etc.)
—This means they can also hold another list

 We’'ve looked at lists as being one-dimensional

— But lists can also be two-
(or three- or four- or five-, etc.) /
dimensional!
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Two-Dimensional Lists: A Grid

* |t may help to think of 2D lists as a grid

twoD = [ [1,2,3], [4,5,6], [7,8,9] 1

1| 2 | 3
4 | 5| 6
7|1 8 | 9
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Two-Dimensional Lists: A Grid

* You access an element by the index of
its row, and then the column

— Remember — indexing starts at O!
0 1 2

1 2 3
1| 4 5 6
7 8 )

15 www.umbc.edu



Two-Dimensional Lists: A Grid

* You access an element by the index of
its row, and then the column

—Remember — indexing starts at O!

| 0 1 2
0 1 ? 3 index: [0][2]
1| 4 5 6
index: [1][O0]
2| 7 8 9
index: [2][1] index: [2][2]
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Lists of Strings

Remember, a string is like a list of characters
So what is a list of strings?
— Like a two-dimensional list!

We have the index of the string (the row)
And the index of the character (the column)
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Lists of Strings

* Lists in Python don’t have to be rectangular
— They can be jagged (rows of different lengths)

* Anything we could do o t 2 3 4
with a one-dimensional O0|A|l|1|c|e
list, w.e can (.jOWIt!’]a I Blolb
two-dimensional list
— Slicing, index, appending 2|E|[Vv]|a|n

names
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Three-Dimensional Lists

* How would you declare a 3D list?
e Square brackets for the list, row, and cells

~overall list brackets |

one cell

K-M

threeD = [ [ [201,"B"], [202,"B"], [203,"C"] 1,

[ [313,"C"], [331,"C"], [341,"C"] ] 1

one row
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Three-Dimensional Lists

* Don’t think of the third dimension as “depth”
* |nstead, it's simply the “contents” of the cells

The first two
dimensions give us a
2 row, 3 column list

threeD = [ [|[201,"B"] [202,"B"] [203,"C"]}1 1,

[{[313,"C"]} |[331,"C"]}, [341,"C"] ] 1

20 www.umbc.edu



Mutability
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Mutable and Immutable

* |n python, certain structures cannot be altered
once they are created and are called immutable

—These include integers, tuples, and strings

e Other structures can be altered after
they are created and are called mutable

—These include lists
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Lists and Mutability

* When you assign one list to another, it is by
default a “shallow” copy of the list

* Any “in place” changes that are made to the
shallow copy show up in the “original” list

e Sort of like a pseudonym: one variable can be
accessed with two separate names

 The other option is a “deep” copy of the list,
but you must specify this is what you want
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Shallow and Deep Copies

* A shallow copy is when the new variable
actually points to the old variable, rather than
making an actual copy

* Adeep copy is the opposite, creating an
entirely new list for the new variable
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AN HONORS UNIVERSITY IN MARYLAND
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Shallow Copy Example

* A shallow copy and its effects on the original:

listl = ["red",
list2 = listl

nbluen]

list2.append('"green")

list2[1] = "yellow"

print ("original: ", listl)
print("shallow copy: ", list2)

original: ['red', 'yellow', 'green']
shallow copy: ['red', 'yellow', 'green']
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Shallow Copy

* When we make a shallow copy, we are
essentially just giving the same list two
different variable names

— They both reference the same place in memory

listl

$ 1) (1) 1) 1)
49_[ red", "blue"]

list2
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Deep Copy

* There are two easy ways to do a deep copy:
— Use slicing, and “slice” out the entire list
— Cast the original as a list when assigning

* With these, Python returns a brand new copy
that you can then assigh to the new variable

—Now you have two separate, individual lists!
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Deep Copy Example

listl = ["red", "blue"]
list2 = listl][:]

# use slicing to copy

list2[1] = "yellow"

list3 = list(listl) # use casting to copy
list3.append("purple")

print ("original: ", listl)

print ("deep copyl: ", list2)

print ("deep copy2: ", list3)

original: ['red', 'blue']

deep copyl: ['red', 'yellow']

deep copy2: ['red', 'blue', 'purple']
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Deep Copy

* Creates a copy of the entire list’s contents, not
just of the list itself

e Each variable now has its own individual list

listl > ["red", "blue"]
1lSt2 ) :nredn , nyellowll]
llSt3 ) :"red" , "blue" , "purple"]
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Mutability and Functions
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Lists, Functions, and Mutability

 When actual parameters are passed to a
function, they are assigned to the formal
parameters using the assignment operator

* So does the function have a deep copy?

— No, it has a shallow copy!

—It’s a reference to the original list
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Python Is “Lazy”

* Lists can be a lot bigger than Booleans,
integers, or even strings!

* When we pass a list as a parameter, Python
doesn’t want to copy the entire thing

— Copying can take a lot of memory and time

* |[nstead, when we pass a list to a function,
Python actually sends a reference to the list
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References

* A reference essentially states where the
list is stored in the computer’s memory

— Mutable objects are always passed by reference

e Since lists are mutable, that means that the
function the list was passed to now has direct
access to the “original” list

— And can change its contents!!!
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* main () hasalist called myList

* Instead of copying over all of
the values stored inmyList,
Python will instead pass a

\, ., reference to newFxn ()., / il

N
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* main () hasalist called myList

* Instead of copying over all of
the values stored inmyList,

. Python will instead pass a
@ .. referenceto newFxn () .

\\ I

23 But now newFkF'xn ()

has direct access to the
actual contents of myList

\ M E\W newa
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Mutability in Functions

* When a parameter is passed that is mutable,
it is now possible for the second function to
directly access and change the contents

* This only works if we change the variable
“in place” — assigning a whole new value to
the variable will override the mutability

— Any “in place” changes that are made to the
shallow copy show up in the “original” list
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Scope and Mutability in Functions

* A good general rule for if a change is “in place”:

* When you use something like .append /()
on it, that’s an “in place” change

* When you use the assignment operator, the
that’s not an “in place” change

— Unless you are editing one element, like in a list
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Scope and Mutability in Functions

Function is called, and formal parameter F
is assigned the actual parameter A

A is immutable A is mutable
(integer, string) (lists)
F is assigned to u N F is modified
, something else in place
A dl?is:h;;h::ge F = [0, 1] F.append (2)
< F = "hello" F[0] = 17
A doesn’t change A changes
If F changes If F changes
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Using Mutability

e Shallow copies are not always a bad thing!

* Being able to
— Pass a list to a function
— Have that function make changes
— And have those changes “stick”

* Can be very useful!
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LIVECODING!!!
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Cloning and Adopting Dogs

* Write a program that contains the following:

* A main () with a list of dogs at an adoption event

— Use deep copy to “clone” the dogs by creating a
second, unique list (and a third one as well)

* An adopt () function that takes in a list of dogs,
and replaces all of their names with “adopted!”

— These changes should “stick” in main() as well,
without the function returning anything
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Announcements

* HW 5 out on Blackboard Wednesday night
— Must re-take the Academic Integrity Quiz to see it
— Due next Friday, April 7th @ 8:59:59 PM

* Discussions start again next week
— Remainder of labs will be in-person
— Pre Lab quiz will come out Friday morning

* Exam pick-up at the front
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