CMSC201
Computer Science | for Majors

Lecture 14 — Lists (Continued)

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted www.umbc.edu

Last Class We Covered

* The tuple data structure

— Creation, conversion, slicing, traversal
e Casting variables
* The membership “in” operator

)I Infinite while loops <
E_D

2 www.umbc.edu

Any Questions from Last Time?

3 www.umbc.edu

Today’s Objectives

To review what we know about lists already

To learn more about lists in Python
To understand two-dimensional lists

— (And more dimensions!)
To practice passing lists to functions
To learn about mutability and its uses

www.umbc.edu

List Review

5 www.umbc.edu

Previously Seen Operations

 Many of the operations we saw on strings are
possible with lists

* Which of the following works with lists?
— Concatenation (+)
— Indexing
— Slicing
— .lower () and .upper ()
— len ()

6 www.umbc.edu

Concatenation

e Concatenation does work on lists!

— But it has the same limit as string concatenation
— You can only concatenate lists with lists

 So this works:
bookList + supplyList

e But this doesn’t:

animall.ist + "horse"
animallist + ["horse"]

7 www.umbc.edu

Indexing

* Indexing does work on lists!
* |n the exact same way it does for strings

* Some examples:
studentNames[16]
courseTitles[len (courseTitles) - 4]
songList [FAV INDEX]

8 www.umbc.edu

Slicing

* Slicing does work on lists!
* |n the exact same way it does for strings

* Slicing goes “up to but not including”

the end of the slice

>>> stuff = [17, "A", -22, True, "Hello"]
>>> print(stuff[2:4])

[-22, True]

www.umbc.edu

.lower () and .upper ()

* These operations do not work on lists!

— They don’t make sense for a list

* Inthe same way, .append() and
.remove () don’t work on strings

* |f you try, you get an error about attributes:

AttributeError: 'str' object has no
attribute 'remove'

10 www.umbc.edu

len ()

 Calling len () does work on lists!

* |n the exact same way it does for strings

* Returns the length of the list
—In other words, the number of elements

11 www.umbc.edu

Two-Dimensional Lists

12 www.umbc.edu

Two-Dimensional Lists

 Lists can hold any type (int, string, float, etc.)
—This means they can also hold another list

 We’'ve looked at lists as being one-dimensional

— But lists can also be two-
(or three- or four- or five-, etc.) /
dimensional!

13 Image from wikimedia.org www.umbc.edu

Two-Dimensional Lists: A Grid

* |t may help to think of 2D lists as a grid

twoD = [[1,2,3], [4,5,6], [7,8,9] 1

1| 2 | 3
4 | 5| 6
7|1 8 | 9

14 www.umbc.edu

Two-Dimensional Lists: A Grid

* You access an element by the index of
its row, and then the column

— Remember — indexing starts at O!
0 1 2

1 2 3
1| 4 5 6
7 8)

15 www.umbc.edu

Two-Dimensional Lists: A Grid

* You access an element by the index of
its row, and then the column

—Remember — indexing starts at O!

| 0 1 2
0 1 ? 3 index: [0][2]
1| 4 5 6
index: [1][O0]
2| 7 8 9
index: [2][1] index: [2][2]

16 www.umbc.edu

17

Lists of Strings

Remember, a string is like a list of characters
So what is a list of strings?
— Like a two-dimensional list!

We have the index of the string (the row)
And the index of the character (the column)

www.umbc.edu

Lists of Strings

* Lists in Python don’t have to be rectangular
— They can be jagged (rows of different lengths)

* Anything we could do o t 2 3 4
with a one-dimensional O0|A|l|1|c|e
list, w.e can (.jOWIt!’]a I Blolb
two-dimensional list
— Slicing, index, appending 2|E|[Vv]|a|n

names

18 www.umbc.edu

Three-Dimensional Lists

* How would you declare a 3D list?
e Square brackets for the list, row, and cells

~overall list brackets |

one cell

K-M

threeD = [[[201,"B"], [202,"B"], [203,"C"] 1,

[[313,"C"], [331,"C"], [341,"C"]] 1

one row
19 www.umbc.edu

Three-Dimensional Lists

* Don’t think of the third dimension as “depth”
* |nstead, it's simply the “contents” of the cells

The first two
dimensions give us a
2 row, 3 column list

threeD = [[|[201,"B"] [202,"B"] [203,"C"]}1 1,

[{[313,"C"]} |[331,"C"]}, [341,"C"]] 1

20 www.umbc.edu

Mutability

21 www.umbc.edu

Mutable and Immutable

* |n python, certain structures cannot be altered
once they are created and are called immutable

—These include integers, tuples, and strings

e Other structures can be altered after
they are created and are called mutable

—These include lists

22 www.umbc.edu

Lists and Mutability

* When you assign one list to another, it is by
default a “shallow” copy of the list

* Any “in place” changes that are made to the
shallow copy show up in the “original” list

e Sort of like a pseudonym: one variable can be
accessed with two separate names

 The other option is a “deep” copy of the list,
but you must specify this is what you want

23 www.umbc.edu

Shallow and Deep Copies

* A shallow copy is when the new variable
actually points to the old variable, rather than
making an actual copy

* Adeep copy is the opposite, creating an
entirely new list for the new variable

24 www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

25

Shallow Copy Example

* A shallow copy and its effects on the original:

listl = ["red",
list2 = listl

nbluen]

list2.append('"green")

list2[1] = "yellow"

print ("original: ", listl)
print("shallow copy: ", list2)

original: ['red', 'yellow', 'green']
shallow copy: ['red', 'yellow', 'green']

www.umbc.edu

Shallow Copy

* When we make a shallow copy, we are
essentially just giving the same list two
different variable names

— They both reference the same place in memory

listl

$ 1) (1) 1) 1)
49_[red", "blue"]

list2

26 www.umbc.edu

Deep Copy

* There are two easy ways to do a deep copy:
— Use slicing, and “slice” out the entire list
— Cast the original as a list when assigning

* With these, Python returns a brand new copy
that you can then assigh to the new variable

—Now you have two separate, individual lists!

27 www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

28

Deep Copy Example

listl = ["red", "blue"]
list2 = listl][:]

use slicing to copy

list2[1] = "yellow"

list3 = list(listl) # use casting to copy
list3.append("purple")

print ("original: ", listl)

print ("deep copyl: ", list2)

print ("deep copy2: ", list3)

original: ['red', 'blue']

deep copyl: ['red', 'yellow']

deep copy2: ['red', 'blue', 'purple']

www.umbc.edu

Deep Copy

* Creates a copy of the entire list’s contents, not
just of the list itself

e Each variable now has its own individual list

listl > ["red", "blue"]
1lSt2) :nredn , nyellowll]
llSt3) :"red" , "blue" , "purple"]

29 www.umbc.edu

Mutability and Functions

30 www.umbc.edu

Lists, Functions, and Mutability

 When actual parameters are passed to a
function, they are assigned to the formal
parameters using the assignment operator

* So does the function have a deep copy?

— No, it has a shallow copy!

—It’s a reference to the original list

31 www.umbc.edu

Python Is “Lazy”

* Lists can be a lot bigger than Booleans,
integers, or even strings!

* When we pass a list as a parameter, Python
doesn’t want to copy the entire thing

— Copying can take a lot of memory and time

* |[nstead, when we pass a list to a function,
Python actually sends a reference to the list

32 www.umbc.edu

References

* A reference essentially states where the
list is stored in the computer’s memory

— Mutable objects are always passed by reference

e Since lists are mutable, that means that the
function the list was passed to now has direct
access to the “original” list

— And can change its contents!!!

33 www.umbc.edu

NNNNNNNNNNNNNNNNNNNNNN

* main () hasalist called myList

* Instead of copying over all of
the values stored inmyList,
Python will instead pass a

\, ., reference to newFxn ()., / il

N
_/
> ™ A NWa N

myhst? \ 72

N

ain() newfm

34 Images from pixabay.com and flickr.com www.umbc.edu

NNNNNNNNNNNNNNNNNNNNNN

* main () hasalist called myList

* Instead of copying over all of
the values stored inmyList,

. Python will instead pass a
@ .. referenceto newFxn () .

\\ I

23 But now newFkF'xn ()

has direct access to the
actual contents of myList

\ M E\W newa

3 5 Images from pixabay.com and flickr.com www.umbc.edu

N

Mutability in Functions

* When a parameter is passed that is mutable,
it is now possible for the second function to
directly access and change the contents

* This only works if we change the variable
“in place” — assigning a whole new value to
the variable will override the mutability

— Any “in place” changes that are made to the
shallow copy show up in the “original” list

36 www.umbc.edu

Scope and Mutability in Functions

* A good general rule for if a change is “in place”:

* When you use something like .append /()
on it, that’s an “in place” change

* When you use the assignment operator, the
that’s not an “in place” change

— Unless you are editing one element, like in a list

37 www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Scope and Mutability in Functions

Function is called, and formal parameter F
is assigned the actual parameter A

A is immutable A is mutable
(integer, string) (lists)
F is assigned to u N F is modified
, something else in place
A dl?is:h;;h::ge F = [0, 1] F.append (2)
< F = "hello" F[0] = 17
A doesn’t change A changes
If F changes If F changes

3 8 From http://stackoverflow.com/a/25670170 www.umbc.edu

Using Mutability

e Shallow copies are not always a bad thing!

* Being able to
— Pass a list to a function
— Have that function make changes
— And have those changes “stick”

* Can be very useful!

39 www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

LIVECODING!!!

40 www.umbc.edu

Cloning and Adopting Dogs

* Write a program that contains the following:

* A main () with a list of dogs at an adoption event

— Use deep copy to “clone” the dogs by creating a
second, unique list (and a third one as well)

* An adopt () function that takes in a list of dogs,
and replaces all of their names with “adopted!”

— These changes should “stick” in main() as well,
without the function returning anything

41 www.umbc.edu

Announcements

* HW 5 out on Blackboard Wednesday night
— Must re-take the Academic Integrity Quiz to see it
— Due next Friday, April 7th @ 8:59:59 PM

* Discussions start again next week
— Remainder of labs will be in-person
— Pre Lab quiz will come out Friday morning

* Exam pick-up at the front

42 www.umbc.edu

